ESA’s Concurrent Engineering Workshop a great opportunity for Matthew Bowen of RMC

Concurrent engineering is a method of designing and developing products for the space sector. Contrary to traditional design methods, in concurrent engineering all subsystems are designed simultaneously. This is a far more efficient way of working, but comes with its own unique challenge: solutions in one area that could impact the design of another subsystem must be instantly identified and communicated between teams. Although concurrent engineering is a more complicated process to begin with, in effect it allows mistakes to be identified – and rectified – earlier, therefore reducing the overall design time. 

Matt was recently selected to participate in the European Space Agency’s (ESA) Academy’s Concurrent Engineering Workshop of January 2020 alongside 29 other students. Here is his account of the experience:

My peers originated from 12 different European countries and ranged in experience from just beginning their Master’s degree to nearly completing their PhD. We congregated in the south of Belgium for a week to analyze and design a CubeSat mission to Neptune and the heliopause.

The cohort was divided into 8 subteams: Attitude & Orbit Control, Thermal, Power, Communications, Instruments & Optics, Configuration, Structures, Trajectory, and Propulsion. I was selected for the Instruments & Optics team; our task was to implement a scientific suite to fulfill the mission’s goals. The mission, titled the Extrasolar Deepspace Gas giant Explorer (EDGE), intends to image the outer planets and measure the magnetic environment at the edge of the solar system and beyond. The space segment of the EDGE mission was constrained to a 12U cubesat form factor, and the use of radioisotope thermoelectric generators was not permitted.

The requirements imposed significant constrictions on our final design; namely our solutions for power generation and communications at distances greater than 120 AU from the Earth. The limitations of data throughput at large distances affected the design choice of the Instruments & Optics team as well.

Ultimately, I gained valuable experience in concurrent satellite design and made new connections to the European space industry. I’d like to thank the Natural Sciences and Engineering Research Council of Canada and the European Space Agency for the opportunity to participate and I look forward to working with ESA again in the future.

Interested in ESA Academy’s opportunities? check out https://www.esa.int/Education/ESA_Academy

Leave a Reply

Your email address will not be published.